Wentzell–Freidlin Large Deviation Principle for Stochastic Convective Brinkman–Forchheimer Equations

نویسندگان

چکیده

This work addresses some asymptotic behavior of solutions to stochastic convective Brinkman–Forchheimer (SCBF) equations perturbed by multiplicative Gaussian noise in two and three dimensional bounded domains. Using a weak convergence approach Budhiraja Dupuis, we establish the Laplace principle for strong solution SCBF suitable Polish space. Then, Wentzell–Freidlin type large deviation is derived using well known results Varadhan Bryc. The deviations short time are also considered this work. Furthermore, study exponential estimates on certain exit times associated with trajectory equations. contraction principle, these from frame reference (LDP). improves several LDP available literature tamed Navier–Stokes as damping

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite dimensional semimartingales

Let H be a separable Banach space. We considered the sequence of stochastic integrals {Xn− · Yn} where {Yn} is a sequence of infinite dimesnional H semimartingales and Xn are H valued cadlag processes. Assuming that {(Xn, Yn)} satisfies large deviation principle, a uniform exponential tightness condition is described under which large deviation principle holds for {(Xn, Yn, Xn− · Yn)}. When H i...

متن کامل

Large Deviation Theory for Stochastic Diierence Equations

The probability density for the solution yn of a stochastic di erence equation is considered. Following Knessl, Matkowsky, Schuss, and Tier [1] it is shown to satisfy a master equation, which is solved asymptotically for large values of the index n. The method is illustrated by deriving the large deviation results for a sum of independent identically distributed random variables and for the joi...

متن کامل

Stochastic Sub - Additivity Approach to the Conditional Large Deviation Principle

University of Chicago Given two Polish spaces AX and AY, let ρ AX × AY → d be a bounded measurable function. Let X = Xn n ≥ 1 and Y = Yn n ≥ 1 be two independent stationary processes on AX and A ∞ Y , respectively. The article studies the large deviation principle (LDP) for n−1 ∑n k=1 ρ Xk Yk , conditional on X. Based on a stochastic version of approximate subadditivity, it is shown that if Y s...

متن کامل

A large deviation principle for Dirichlet posteriors

Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...

متن کامل

Large deviation principle for enhanced Gaussian processes

We study large deviation principles for Gaussian processes lifted to the free nilpotent group of step N . We apply this to a large class of Gaussian processes lifted to geometric rough paths. A large deviation principle for enhanced (fractional) Brownian motion, in Hölderor modulus topology, appears as special case. © 2007 Elsevier Masson SAS. All rights reserved. Résumé Nous etudions les princ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Fluid Mechanics

سال: 2021

ISSN: ['1422-6952', '1422-6928']

DOI: https://doi.org/10.1007/s00021-021-00587-x